
A New Virial-Theorem-Based 
Semi-Ab-Znitio Method for 

Atomistic Simulations 

by Genrich L. Krasko 

. . . . . . . . . . . ...” _ . . 

ARL-TR-2052 September 1999 

Approved for public release; distribution is unlimited. 

DTIC QUALITY INBE’ECTED 4 19991105 066 : 



, 

, 

The findings in this report are not to be construed as an official 
Department of the Army position unless so designated by other 
authorized documents. 

Citation of manufacturer’s or trade names does not constitute an 
official endorsement or approval of the use thereof. 

Destroy this report when it is no longer needed. Do not return 
it to the originator. 

. 



Abstract 

A new semi-ab-initio method for atomistic simulations based on the virial theorem has been 
suggested. The method is completely within the realm of the density-functional theory and uses 
the so-called “reduced” electron spin-density functional (SDF). The crucial component of the 
method is the ansatz expressing (for both one-component and two-component systems) the 
electron density at point r as a superposition of “atomic” densities due to the neighboring atoms. 
The total energy of this system is shown to consist of three terms. The first depends only on the 
simulation volume and is independent of the atomic configuration. The second and third, like 
the embedded-atom method (EAM), are the interatomic pairwise interaction energy, and an 
“N-electron” term, which cannot be expressed as an interatomic interaction; it originates from 
the electron-correlation interaction. The atomic densities are constructed using a set of 
polynomial-exponential functions resulting in an analytic form for the pair interatomic potential. 
The coeffkients in the atomic density expressions are found using a calibration procedure based 
on performing a series of ab-initio calculations for a few crystal modifications of this system. 
Success will depend on whether the charge density in a low-symmetry system under simulation 
will also be close to the true density obtainable from a meaningful ab-initio calculation; then, the 
simulation results would be identical to those of the corresponding ab-initio calculation. To 
what extent the superposition ansatz satisfies this condition is unclear without experimental 
confirmation. 
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1. Introduction 

The formulation of the density-functional formalism in the pioneering works of Hohenberg 

and Kohn (1964), and Kohn and Sham (1965) published almost 35 years ago opened a new era in 

the quantum-mechanical approach to the physics of condensed matter. The advent of high-speed 

computers and efficient methods of electronic calculations using the density-functional theory 

made it possible to achieve tremendous progress in our understanding of electronic and structural 

properties of both crystalline and amorphous solids. 

The density-functional approach requires solving a self-consistent Kohn-Sham 

quasi-one-particle Schrodinger-like equation. While it is a rather straightforward and easy task 

for high-symmetry crystalline systems, analysis of low-symmetry states, like crystal-lattice 

defects, free surfaces, grain boundaries (GBs), etc., is, in most cases impossible now, in spite of 

proliferation of high-speed supercomputers and efficient ab-initio methods. The problem 

becomes completely intractable when dealing with arbitrary (nonuniform) crystal-lattice 

deformation, defect relaxation, and analysis of polycrystals. 

A family of semi-empirical methods* emerged during the recent decade, which has made the 

above problems manageable. In fact, tremendous success has been achieved in atomistic 

modeling of a great many important systems elucidating processes of atomic relaxation 

accompanying point defects, impurities, ad-atom layers, GBs and free surfaces, dislocations 

dynamics, etc. As a triumph of atomistic simulation, new and unsuspected features of 

dislocation dynamics have been recently discovered (Bulatov et al. 1998). 

The efforts in rectifying semi-empirical methods in recent years have been directed at 

including angle-dependent potentials; this is crucial when treating transition metals and 

* For references to the most widely used method see the following: the embedded-atom method (Baskes 1997); the 
Finnis-Sinclair N-body potential (Finnis and Sinclair 1984; Calder and Bacon 1993); the tight-binding 
fourth-moment method (Carlsson 1990, 1991); the angle-dependent tensor potential, the so-called 
embedded-defect methods (Simonelly, Pasianot, and Savino 1997); and the bond-order family of potentials 
(Tersoff 1986,1989; Aoki, Horsfield, and Pettifor 1997; Krasko, Rice, and Yip, to be published). 
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semiconductors (Tersoff 1986, 1989; Carlsson 1990, 1991; Aoki, Horsfield, and Pettifor 1997; 

Simonelly, Pasianot, and Savino 1997). In attempts to make semi-empirical methods as close to 

ab-initio methods as possible, the tight-binding approach has been seriously explored (Bernstein 

and Kaxiras 1996; Yang, Mehl, and Papaconstantoupolos 1998). 

Recently (Krasko, to be published), it was suggested that the virial theorem, as applied to a 

condensed-matter system, enabled one to directly interpret the ingredient contributions to the 

embedded-atom method (EAM): the pair potential and the embedded function, in terms of the 

density-functional theory. This interpretation also suggests a way of developing a fundamentally 

new method for atomistic simulations that can be called “semi-ab-initio.” This method would be 

using the virial-theorem density-functional expression for the total energy, the electron charge 

density being the only “adjustable” quantity. The method would be applicable both to pure 

crystals, compounds, and systems with impurities. Angular-dependent interatomic interaction 

would also be automatically included in a natural way. The present technical report summarizes 

the first attempts at developing such a method. 

The work summarized in this technical report has been done during the author’s stay with the 

Department of Nuclear Engineering, MIT, Cambridge, MA, as a visiting scholar, in academic 

year 1997-1998. 

2. Theoretical 

As mentioned above, 

Background of the New Method 

in its traditional implementation, the density-functional approach 

requires solving a self-consistent Kohn-Sham quasi one-particle Schrodinger equation. As for 

the exact density functional, or the spin-density functional (SDF) for the total energy, E{p(r)} 

[where p(r) is the electron density at point r], its explicit form is not known and may never be. 

In the recent years, the interest toward finding a meaningful approximation for the SDF, 

using various versions of “orbital free” kinetic energy (KE) functionals has been awakened (e.g., 

Wang and Teter 1992; Pearson, Smargiassi, and Madden 1993; Smargiassi and Madden 1994). 
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On the other hand, the SDF, in what can be called a “reduced” form, can easily be found 

using the scaling procedure usually involved in formulating the virial theorem (Ross 1969). In 

this section, we show how such a reduced SDF can be found. 

The total energy functional, E{p(r)}, is, as usual, 

where T{p(r)}, U{p(r)}, and E&p(r)} are, respectively, the KE of noninteracting electrons and 

the potential and exchange-correlation energy functionals. Note that here, p(r) may be a trial 

density. 

The potential energy functional is 

U = j V(r) p(r) dr + l/2 J j p(r) p(r’)/lr-r’l dr dr’ + Ees , (2) 

where V(r) is the “external” (electron-ion) potential, and Ees is the electrostatic ion-ion 

interaction energy. As for Gc{p(r)}, we suppose that it is known either in a local density 

approximation (LDA) (Hohenberg and Kohn 1964) or the so-called “generalized gradient 

approximation” (GGA) (Perdew, Burke, and Emzerhof 1996): 

CC = J p(r) &(r) dr , (3) 

where E&r) = &&p(r)) in LDA and &(p(r), t, s) in GGA (where t and s are the dimensionless 

density gradient variables). 

Following the scaling procedure used by Ross (1969), let us introduce the dimensionless 

coordinates z = r/Q1’3. 

3 



Then, 

(the GGA dimensionless gradient variables t and s are independent of volume). The KE of 

noninteracting electrons is 

T(z) = IZ,,J &i(z)* (l/2) V2+(z) dz , (5) 

where &(z)‘s are the (trial) one-electron wave functions and the summation is extended to all 

occupied states. Hence, T scales as 

T{p(r)} -+ T(@/Qz3. 

Now, let us calculate P = -dE {p(r)}/dQ: 

P=2/3T/Q- d(U+E&/dLL 

The volume derivative is easily taken using the scaling equations (4) and (6): 

d(U + E&KJ = - U(CQl(352) 

+1/Q JIP(r) &(r) - p+(r) kc+(r) - p- (r) I.& b-W 

(6) 

(7) 

(8) 
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If p(r) is the exact solution of the Kohn-Sham equation (the minimizer of the SDF), then 

P = P, the physical pressure, and equation (7) is just one of the versions of the virial theorem. It 

may be represented in the traditional form (Slater 1972; Janak 1974) using equation (8): 

2T = 3 PQ - U + 3 j [p(r) E,,(r) - p’(r) kc+(r) - p- (r) hCv (r)]dr . (9) 

In equation (8) and here, 

pxc+*- (r) = GExc/Gp%-(r) (10) 

is the exchange-correlation one-electron potential (+‘- stands for spin polarization). The 

expression for the exchange-correlation part of equation (9), here, is more general than that for 

non-spin-polarized systems in Janak (1974). Since the GGA gradient variables do not depend on 

volume, equation (9) is also the expression for the virial theorem in GGA. 

We again stress that both the scaling, equations (4) and (6), and the taking of the derivative 

over the volume are valid not for just the SDF of stationary electron density, p(r) but for any 

appropriate trial density. In what follows, p(r) means just such, a trial density. 

It should be also stressed that, although the virial theorem, equation (9), is also valid for trial 

densities (then P has to be substituted for P), it is satisfied for a real physical pressure P only if 

p(r) is a,highly accurate solution of the corresponding Kohn-Sham equation. 

Let us return to equation (7). We have 

T = 3/2 PC& + 3/2 Q d&J + E&/d0 . (11) 

IfP=O,then 



T = 3/2 L&I d&J + &,)/dQIMO , (12) 

where Szo is the volume corresponding to P = 0. 

For an arbitrary volume, Q, the noninteracting electron ICE, due to the scaling, equation (6), 

equals 

T(Q) = [3/2 !& d(U + E&/dCIIMo ] (52a/sL)2/3 (13a) 

or, making use of equation (8), 

T(Q) = (Q&I)2m{- l/2 U(Qo) 

+ 312 j[p(r) &(r) - p’(r) k&) - p - (r) kc - WldrkmJ . 

Finally, the total energy functional is 

E(D) = U + bC + 3/2 Q (Q&)5’3 d(U + E&/dSIsr=szo 

or, in the explicit form, 

E(Q) = U + &, + (QIKJ)~~{- l/2 U(Qo) + AXClozoo} , 

where 

kc = ~2 JiNr> M9 - p+(r) p&9 - p- (r) kc- (r)]dr . 

Then, the “pressure” equals 

P(sz) = -d(U + &,)/d&2 + (QjGI)5’3d(U + E&/d~l~o, 

(13b) 

WW 

UW 

(15) 

Wa) 
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or 

P(Q) = 1/(3Q)(-U(Q) + 2 AXc -(sZ,&Qu3 [-U(S&) + 2 Axcls~o]} . (16b) 

Equations (14a) and (14b) are the reduced SDF that we sought. It is an explicit functional of 

p(r) valid for any appropriate trial density. For a stationary density (satisfying a Kahn-Sharn 

equation), equations (7) and (9) are equivalent to the virial theorem and equations (14a) and 

(14b) just “recalculate” the total energy, which has to be equal to that following from the 

traditional Kahn-Sham method. Equation (16) is then the equation of state. 

Of course, the reduced SDF does not contain all the information of the general universal 

SDF. However, it may serve as a basis for a fundamentally new approach toward developing 

semi-ab-initio methods of atomistic simulations. 

In the next section, we outline the algorithm of constructing the model density and the 

procedure of calculating the total energy, which lies at the core of the new proposed method. 

3. Formulation of the Method 

Suppose that the ground-state electron density may be written as a superposition of “atomic” 

(or “pseudo-” or “quasi-atomic”) densities:* 

p(r) = & p”(lr - RI) . (17) 

This ansatz has, in the past, been studied in great detail. It was, in particular, shown (Chetty, 

Jacobsen, and Norskov 1991) that optimized and transferable atomic densities can be found from 

* There is no unique and exact way of subdividing the total electron charge density into a superposition of atomic 
densities. In fact, by introducing Wamier functions, one can show that, in general, the electron charge density 
cannot be represented exactly as the superposition of neighbor-centered positive functions that could be interpreted 
as individual atomic densities; it is possible only for insulators (Krasko, to be published). 
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the first principles. Equation (17) is the main approximation of our method. A procedure of 

constructing p’(lr - RI) is discussed next. The ansatz, equation (17), also enables one (Krasko 

1999) to interpret the potential energy contributions to E”, equation (lo), in an intuitively 

appealing form, the one similar to that of the EAM. 

Using equation (17), the potential energy, U, equation (2), can be written down in terms of an 

effective pair potential: 

1/2U = E” + l/2 I&u’ V(R - R’) . W3) 

The first term depends only on the volume but not the atomic coordinates (we give its explicit 

expression later). The second term is the pair interaction energy with the pair potential: 

V(R) = - l/(22) Jdq Z p”(q)/q2 exp(iqR) 

+ l/(47?) Jdq lp”(q)12/q2 exp(iqR) + Z2/lRl . (19) 

Here and below, p”(q) is the Fourier transform of the atomic charge density, p”(r) and the 

integration extends over all the reciprocal space. 

The exchange-correlation contribution, AXC, to the total energy, bC, from equation (3), 

A xc = 3/2s P(r) [a(r) - pb91 dr, (20) 

cannot, however, be represented in terms of an interatomic potential. 

Finally the total energy, equation (14b), can be rewritten as 

E = E” + l/2 (1 - l/2 (SZOXI)“~)&+~~ V(R - R’) 

+ l&C + (QJQ)2/3Axc{p(r) h=~~ . (21) 
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Here, 

E” = -N (1 - l/2 (sZ~sZ)“3) (l/(472) Z Jdq p”(q)/q2 

+ l/(8$) Jdq lp”(q)12/q2} (22) 

(N is the total number of atoms in the simulation volume). The origin of this energy contribution 

is obvious; it is the atomic “self-interaction,” the term corresponding to R = R’, which has been 

excluded from the pair potential sum in equation (20). 

Now, we proceed with formulation of the suggested method. As was mentioned previously, 

our goal is to parametrize the atomic density, p”(r). 

Since it is desirable to represent the density as exactly as possible, it is appealing to separate 

the contributions of the core and the valence electrons: 

p’(lrl) = poc,(lrl) + pov~(lrl) . (23) 

poco~(lrl) will be approximated 

calculations. Let 

once and for all for the given atom using the results of ab-initio 

poco~lrl) = &orZi{Coi+ Clir + C2i3 +...) eXp(-h’ir)}. (24) 

Here, &,, is the normalization constant (securing the right number of core electrons), and Cii’S 

and h”i’S are the parameters to be found by root-mean-square (rms)-fitting of equation (24) to the 

calculated core densities (depending on the core structure, there may be a few different 

“subshells,” i). 

The valence charge density will be approximated by the same class of functions: 

. 

povdlrl) = A&i{vOi+ v’i r + v2i 3 +...) exp(-+fi r)} , (25) 
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where AVd, again, is the normalization constant (securing the right number of valence electrons) 

and tii’s and y’i’s are the adjustable parameters. In a transition metal, one may expect three 

different subshells, i, corresponding to -s, -p, and -d electrons. 

The chosen class of functions is convenient, since it allows the integration to be performed 

analytically when calculating both the Fourier transforms of the densities and the effective pair 

potential, equation (19), and the structure-independent term, E”, equation (22). (We are not 

writing down those lengthy formulae here). 

Thus, the first two contributions to E, equation (21), can easily be found in analytic form. 

The calculation of the third and fourth terms to do with exchange correlation is less 

straightforward. First of all, an exchange-correlation model (either local or GGA) has to be 

chosen among a few models being currently used in ab-initio methods. The corresponding 

subroutine [having p(r) as an input and E(r) and p(r) as outputs] may be borrowed from any 

ab-initio code in the public domain. What is important is that the same exchange-correlation 

approximation be used both in evaluating A,, and all the ab-initio calculations used in the 

method calibration. We suggest to use the most advanced exchange-correlation model, GGA 

(Perdew, Burke, and Ernzerhof 1996). 

The calculation of the exchange-correlation contribution in equation (21), should 

performed as follows. Within the “simulation volume,” a grid of coordinates {r} is to 

constructed. Based on our experience with ab-initio calculations, a nonuniform grid has to 

be 

be 

be 

used, with the grid points thickening around the lattice cites, {R), and being looser in the 

interstitial volume.* Then, the total density, p(r), as a superposition of p’(lr - RI)‘s is calculated 

on this grid. Computationally, this is to be a rather fast procedure since, typically, p”(lr - RI) 

virhmlly completely decays by the third shell of neighbors. As the last step in the calculation of 

the exchange-correlation contributions to the total energy, the integrations are to be performed 

using one of the available methods of numerical three-dimensional (3-D) integration. 

*Recently, a more sophisticated way of introducing an “adaptive” coordinate system was suggested; see Modine, 
Zumbach, and Kaxiras (1997). 
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The main idea behind the reduced SDF is to scale the KE functional and thus make use of the 

virial theorem. As a result, the knowledge of the electron charge density (as well as both the 

potential and the exchange correlation contributions) at P = 0, or P = 0 becomes a necessity. 

Therefore, in every calculation of the total energy at a given atomic configuration and simulation 

volume, a part of the calculation must be performed at an “equilibrium” volume, Sz,. This 

volume, however, is unknown. 

We suggest the following procedure of finding &. The total energy at volume Q, 

equation (21), depends on Qe . We may consider S& as a variational parameter and minimize 

equation (21) at fixed Q, with respect to Qo . The obtained value will also automatically satisfy 

equation (16b) at P = 0. 

In order to deal with both an arbitrary volume and C&, we again, use a scaling procedure. Let 

Q be a “reference” simulation volume. Actually, Q, can be any volume within the range of 

physically meaningful volumes. Then the arbitrary volume can be represented as 

SJ = a3Q (26) 

where tin is a scaling factor. Then, all the distances in our model will be scaled uniformly, and 

the density, equation (17), corresponding to the volume, 0, is found simply by multiplying all the 

r’s and R's by CIJ. Suppose Q is the volume at which the total energy, equation (21), is to be 

calculated. The equilibrium volume, Sz,, is then the volume corresponding to the minimum of 

the total energy, equation (21), at fixed SI. Obviously, it would correspond to the scaling factor 

ZiJo: 

Qo = cDo3c2 . (27) 

Thus, we have found the equilibrium volume, C&-+ From this point on, the procedure of 

calculating the total energy, equation (21), is straightforward. 
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This completes the procedure of calculating the total energy of the system. 

We now summarize the method outlined previously. Suppose we want to calibrate the 

method for transition metal MO. The following steps will have to be followed. 

(1) 

(2) 

(3) 

(4) 

(5) 

We begin by performing a series of ab-initio calculations for body-centered cubic (bee) (e.g., 

FXAPW [Singh 19941) to find Ebcc(sZ) and slob” (P = 0). Repeat the previous calculations 

for face-centered cubic (fee), hexagonal close-packed (hcp), and, possibly, a low-symmetry 

hypothetical phase (HP) of MO, and find Efcc(Q), Ehcp(sZ), EHp(sL) and the P = 0 volumes: 

Qo fee , Qo hcp s20Hp. , These calculations also generate the core charge densities to be used in 

the next step. 

Approximate the MO core electron density using equation (24) and find the appropriate 

parameters by rms-fitting the function to the calculated ab-initio MO core density. 

After the previous ab-initio calculations have been performed, we have six equations for 

fitting the parameters of the valence electron density, equation (24): three for the P = 0 

energies of the three phases [we need to calculate only E, equation (21)] and three equations 

P(SZo) = 0. Some more equations may be used; for example, fitting the total energy to the 

ab-initio energies for other HPs or the elastic moduli: Clr, Ctx, CM, and B (we do not write 

out the corresponding formulae, as well as the expression for the force on each atom; they 

are quite straightforward but require a tedious algebra). 

Having solved this system of simultaneous equations, one will find the coefficients in the 

approximation, equation (25). The more complicated procedure of finding QO will be 

necessary for atomistic simulations outside the ab-initio calibration. 

Now, with all the coefficients in equations (24) and (25) known, the calibration of the 

method is completed and one may proceed with atomistic simulations of the system of 

interest. 

* 
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As an example of such a system, let us consider a gram boundary. Let the simulation volume 

(for the unrelaxed GB) be Q that contains N atoms. The MO atoms take positions (R}. First, we 

calculate L20 by minimizing E, equation (21), at the fixed simulation volume Q, with respect 

to SIC). 

In order to analyze the atomic relaxation, one has to calculate the forces on each atom, then 

vary the atomic positions {R) toward the state of mechanical equilibrium (forces equal zero), and 

repeat calculations until an absolute energy minimum has been achieved. On each step of 

shifting the atomic positions, the new Szo has to be calculated using the previously outlined 

procedure. 

Here, we should again stress that the total energy, equation (21), does have the variational 

properties with respect to the electron charge density. Therefore, the minimization to be 

performed does mean finding the density that would correspond to the energy minimum, albeit in 

a restricted manifold of the superpositions of “atomic densities,” equation (17). Thus, the 

precision of the method as a whole depends chiefly on the generation of realistic density, 

equation (17). 

In the next section, we show how the method, in a natural way, can be generalized to a two- 

component system: a crystal with impurity atoms or a compound. 

4. Generalization of the Method to Two-Component 

Systems 

The general formalism of the virial theorem is valid, irrespective of the system it is applied 

to. The difference between a one-component and a two-component (or, for that matter, a 

multicomponent) system is only in how the electron density, p(r), is represented. 
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Let the system be a substitutional solid solution of components A and B (the generalization to 

interstitial solid solution is straightforward). Then, the electron charge density at a given point 

can be written as a generalized ansatz: 

p(r) = Z R {C.&R)p”A(r - R> + CB(R)p’B(r - W . (28) 

The “external,” ion-electron potential is 

v(r) = x R{cA@) ZA + cB(R) zB}/k - RI, (29) 

where C*(R) and C&(R) are the random quantities taking the value 1 if, respectively, an atom A 

or an atom B sits in the site R; and 0 otherwise (C*(R) + Cu(R) = l), p’A(r - R), and poB(r - R) 

are, as before, the atomic densities and ZA and ZB are the nuclei charges of atoms A and B. 

Then E [a counterpart of equation (21)] can be written in terms of effective pair potentials as 

E = E” + l/2 (1 - l/2 (S&JKA)“~)&,R~ {CA(R)CA(R')VAA@ - R’) 

+ CB(R)CB(R’)VBB@ - W + 2 CA@>CB(R’)VAB(R - R’)> 

+ Exe + 0WQ>z3&cWr> YQ=Q~ , (30) 

where &c and Ax,(p(r)} are defined by the same expressions, equations (3) and (15) but with the 

density p(r) obeying the new ansatz, equation (28). 

The first term, again, depends only on volume: 

E” = - l/(47?) <Z>Jdq <p”(q)>/q2 + 1/(8~?) jdq <lp”(q)12>/q2 , (31) 

where 

<z> = CA& + CBZB, 
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and 

<ip”(q)12> = cAip”A(q)12 + cBip”&)12 . 

Also, cA and cB are the atomic fractions of atOm A and B: 

(32) 

and 

where N, again, is the total number of atoms in the simulation volume. The effective interatomic 

potentials then are defined as (a, p = A, B): 

V,@) = -&d(2?t2> Jdq p”pWq2 exp(iqW 

+ l/(4?) Jdq p’,(q) p”a(q>*iq2 exp(iqR) + Z, Zg/lRI . (33) 

The formulation of the method for two-component systems is virtually the same as that 

outlined before. Now one has two core densities: p”*A7Bcor, and two valence densities: poPAPBVd. 

The calibration and implementation of the method is similar to those in one-component case; the 

only difference being that the number of fitting equations doubles and the equations have to 

reflect some representative high- and low-symmetry two-component configurations. 

5. Conclusion 

To summarize, we suggest a semi-ab-i&o method for atomistic simulations based on the 

virial theorem. The method is completely within the realm of the density-functional theory. The 
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crucial component of the method is ansatz equation (17) [or equation (28) for a two-component 

system] expressing the electron density at point r as a superposition of atomic densities due to 

the neighboring atoms. If, upon calibrating the method, the E’s are fitted to the equilibrium 

energies of a few crystal modifications, the electron densities found by the atomic densities 

superposition for those modification are very close to the “true” stationary densities that could be 

found from an ab-i&o calculation. Thus, the success of the method will depend on whether the 

charge density in a low-symmetry system under simulation is also close to the true density that 

could be obtained from a meaningful ab-initio calculation; then, the results of the simulation 

would be identical to those of the corresponding ab-initio calculation. To what extent the 

superposition ansatz satisfies this condition is unclear, a priori testing and experimentation are 

necessary. As was mentioned previously, according to Chetty, Jacobsen, and Naskov (1991), 

meaningful transferable ab-initio atomic densities could be found. 

Regarding the separation of core and valence densities [equations (23)-(25)], a note should 

be added. “Fixing” the core density is reminiscent of a so-called “frozen core” approximation. 

When the frozen-core approximation is involved in an ab-initio method, the virial theorem is not 

valid. The reason for this failure is that, while the frozen core potential is treated as a part of the 

external potential, the exchange-correlation core-valence interaction is also preserved (the virial 

theorem would be valid again if the latter were dropped). In our case, however, the frozen core is 

a part of the total electron density and it is the total electron density that is subject to “fitting” to 

the ab-initio density. In fact, from the physical point of view, it would probably be more logical 

if the calibration of the method consisted in directly fitting the model density to the ab-initio 

density rather than requiring that the calculated and cab-initio energies were equal. We are going 

to explore this path also in a subsequent paper. 

As was already mentioned, the new method is quite versatile. If additional ab-initio 

information about the system of interest is available, it can be easily implemented to make the 

method more realistic. As an example, while doing simulations on diamond-type 

semiconducting crystals, it would be helpful (perhaps even necessary) to introduce, as a separate 

electron density, the so-called “bond charges” (Phillips 1973). The method can also be applied to 

atomistic simulation of ferromagnetic systems; in that case, the separate spin-up and spin-down 

. 
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densities have to be introduced (the exchange-correlation contributions to the energy can be 

easily generalized for a spin-polarized case). 

An important feature of the method is that it automatically allows for “directional bonds.” In 

spite of the fact that, in the suggested implementation, the total valence charge is a superposition 

of spherically symmetric charges, p(r) does have the symmetry of the crystal lattice, thus 

incorporating all “directionality” features. It is interesting, however, that the effective pair 

potential, equation (19) (and its counterparts for two-component system), is lacking 

directionality. Since the Fourier transform of the density, p(q) = p(lql), the angle integrations in 

equation (19) are straightforward, resulting in the remaining integral in equation (19) having the 

integrand that is proportional to sin(qR)/(qR), where q and R are the moduli of the corresponding 

vectors. As a result, the pair potential depends only on the distance: 

V(R) = V(IRI) . 

In fact, that is what is to be expected of a pair potential; if the space is isotropic, the two 

atoms interacting via a pair potential do not have to know anything about their environment since 

no special direction has been singled out. 

The directionality, however, is completely preserved in the exchange-correlation 

contribution, A,,{p(r)}, equation (15), through the symmetry of p(r). 

As was previously mentioned, the method is quite versatile, and, if necessary, nonspherically 

symmetric atomic densities may be introduced (IZwdin 1956). 

17 
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